Tại một buổi biểu diễn nhằm gây quỹ từ thiện, ban tổ chức đã bán được 500 vé.
Câu hỏi:
Tại một buổi biểu diễn nhằm gây quỹ từ thiện, ban tổ chức đã bán được 500 vé. Trong đó có hai loại vé: vé loại I giá 100 000 đồng; vé loại II giá 75 000 đồng. Tổng số tiền thu được từ bán vé là 44 500 000 đồng. Tính số vé bán ra của mỗi loại.
Trả lời:
Gọi số vé bán ra của vé loại I và vé loại II lần lượt là x, y (vé) (0 < x < 500, 0 < y < 500).
Theo bài, ban tổ chức đã bán được 500 vé cả hai loại vé nên ta có phương trình: x + y = 500.
Số tiền thu được khi bán ra x vé loại I là 100 000x (đồng).
Số tiền thu được khi bán ra y vé loại II là 75 000y (đồng).
Theo bài, tổng số tiền thu được từ bán vé là 44 500 000 đồng nên ta có phương trình:
100 000x + 75 000y = 44 500 000, hay 4x + 3y = 1 780.
Ta có hệ phương trình:
Nhân hai vế của phương trình thứ nhất với 4, ta được hệ phương trình sau:
Trừ từng vế của phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta được phương trình: y = 220.
Thay y = 220 vào phương trình x + y = 500, ta được: 220 + y = 500. (1)
Giải phương trình (1):
220 + y = 500
y = 280.
Vậy vé loại I bán ra được 220 vé và vé loại 2 bán ra được 280 vé.