X

Toán 9 Kết nối tri thức

Giải Toán 9 trang 21 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 9 trang 21 Tập 2 trong Bài 20: Định lí Viète và ứng dụng Toán 9 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 21.

Giải Toán 9 trang 21 Tập 2 Kết nối tri thức

Mở đầu trang 21 Toán 9 Tập 2: Bác An có 40 m hàng rào lưới thép. Bác muốn dùng nó để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật có diện tích 96 m2 để trồng rau. Tính chiều dài và chiều rộng của mảnh vườn đó.

Mở đầu trang 21 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được bài toán trên như sau:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x­2 (m).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x­2 = 20.

Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.

Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và Δ=4=2.

Do đó phương trình có hai nghiệm là: x1=10+21=12; x2=1021=8.

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).

HĐ1 trang 21 Toán 9 Tập 2: Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0). Giả sử ∆ = b2 – 4ac ≥ 0.

Nhắc lại công thức tính hai nghiệm x­1, x2 của phương trình trên.

Lời giải:

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

⦁ Nếu ∆ > 0 thì phương trình có hai nghiệm phân biệt:

x1=b+Δ2a, x1=bΔ2a.

⦁ Nếu ∆ = 0 thì phương trình có nghiệm kép:

x1=x2=b2a.

HĐ2 trang 21 Toán 9 Tập 2: Từ kết quả HĐ1, hãy tính x1 + x2 và x1x2.

Lời giải:

Ta có:

x1+x2=b+Δ2a+bΔ2a=2b2a=ba;

x1x2=b+Δ2abΔ2a=b+ΔbΔ2a2

=b+ΔbΔ2a2=b2Δ24a2

=b2b24ac4a2=4ac4a2=ca.

Lời giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: