X

Toán 9 Kết nối tri thức

Giải Toán 9 trang 24 Tập 2 Kết nối tri thức


Haylamdo biên soạn và sưu tầm lời giải bài tập Toán 9 trang 24 Tập 2 trong Bài 20: Định lí Viète và ứng dụng Toán 9 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 24.

Giải Toán 9 trang 24 Tập 2 Kết nối tri thức

Luyện tập 3 trang 24 Toán 9 Tập 2: Tìm hai số biết tổng của chúng bằng –11, tích của chúng bằng 28.

Lời giải:

Hai số cần tìm là hai nghiệm của phương trình x2 + 11x + 28 = 0.

Ta có ∆ = 112 – 4.1.28 = 9 > 0 và Δ=9=3.

Suy ra phương trình có hai nghiệm x1=11+321=4, x2=11321=7.

Vậy hai số cần tìm là –4 và –7.

Vận dụng trang 24 Toán 9 Tập 2: Giải bài toán trong tình huống mở đầu.

Lời giải:

Gọi hai kích thước của mảnh vườn hình chữ nhật là x1; x­2 (m).

Ta có nửa chu vi và diện tích mảnh vườn hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, hàng rào 40 m rào xung quanh mảnh vườn nên nửa chu vi mảnh vườn là 40 : 2 = 20 (m), do đó x1 + x­2 = 20.

Diện tích mảnh vườn hình chữ nhật là 96 m2, do đó x1x2 = 96.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 20x + 96 = 0.

Ta có ∆’ = (–10)2 – 1.96 = 4 > 0 và Δ=4=2.

Do đó phương trình có hai nghiệm là: x1=10+21=12; x2=1021=8.

Vậy chiều dài và chiều rộng của mảnh vườn đó lần lượt là 12 (m) và 8 (m) (do chiều dài luôn lớn hơn chiều rộng).

Bài 6.23 trang 24 Toán 9 Tập 2: Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:

а) x2 – 12x + 8 = 0;

b) 2x2 + 11x – 5 =0;

c) 3x2 – 10 = 0;

d) x2 – x + 3 = 0.

Lời giải:

a) x2 – 12x + 8 = 0.

Ta có: ∆’ = (–6)2 – 1.8 = 28 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1 + x2 = 12; x1x2 = 8.

b) 2x2 + 11x – 5 =0.

Ta có: ∆ = 112 – 4.2.(–5) = 161 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=112; x1x2=52.

c) 3x2 – 10 = 0.

Ta có: ∆’ = 02 – 3.(–10) = 30 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có:

x1+x2=03=0; x1x2=103.

d) x2 – x + 3 = 0.

Ta có: ∆ = (–1)2 – 4.1.3 = –11 < 0 nên phương trình vô nghiệm.

Bài 6.24 trang 24 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau:

а) 2x2 – 9x + 7 = 0;

b) 3x2 + 11x + 8 = 0;

c) 7x2 – 15x + 2 = 0, biết phương trình có một nghiệm x1 = 2.

Lời giải:

a) Ta có: a + b + c = 2 + (–9) + 7 = 0 nên phương trình có hai nghiệm: x1 = 1; x2=72.

b) Ta có: a – b + c = 3 – 11 + 8 = 0 nên phương trình có hai nghiệm: x1 = –1; x2=83.

c) Gọi x là nghiệm còn lại của phương trình.

Theo định lí Viète, ta có: x1x2=27.

Do đó x2=27:x1=27:2=17.

Vậy phương trình có hai nghiệm là x1 = 2 và x2=17.

Bài 6.25 trang 24 Toán 9 Tập 2: Tìm hai số u và v, biết:

a) u + v = 20, uv = 99;

b) u + v = 2, uv = 15.

Lời giải:

a) Vì u + v = 20, uv = 99 nên u và v là hai nghiệm của phương trình x2 – 20x + 99 = 0.

Ta có ∆’ = (–10)2 – 1.99 = 1 > 0 và Δ'=1.

Suy ra phương trình có hai nghiệm x1=10+11=11; x2=1011=9.

Vậy u = 11; v = 9 hoặc u = 9; v = 11.

b) Vì u + v = 2, uv = 15 nên u và v là hai nghiệm của phương trình x2 – 2x + 15 = 0.

Ta có ∆’ = (–1)2 – 1.15 = –14 < 0 nên phương trình trên vô nghiệm.

Vậy không có số u và v nào thỏa mãn yêu cầu đề bài.

Bài 6.26 trang 24 Toán 9 Tập 2: Chứng tỏ rằng nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2 + bx + c = a(x – x­1)(x – x2).

Áp dụng: Phân tích các đa thức sau thành nhân tử:

a) x2 + 11x + 18;

b) 3x2 + 5x – 2.

Lời giải:

⦁ Phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 nên theo định lí Viète, ta có:

x1+x2=bax1x2=ca.

Suy ra b = –a(x1 + x2) và c = ax1x2.

Do đó:

ax2 + bx + c = ax2 – a(x1 + x2)x + ax1x2

= ax2 – ax1x – ax2x + ax1x2

= ax(x – x1) – ax2(x – x1)

= a(x – x1)(x – x2).

Vậy nếu phương trình ax2 + bx + c = 0 có hai nghiệm là x1 và x2 thì đa thức ax2 + bx + c phân tích được thành nhân tử là: ax2 + bx + c = a(x – x­1)(x – x2).

Áp dụng: Phân tích các đa thức thành nhân tử:

a) x2 + 11x + 18.

Phương trình x2 + 11x + 18 = 0 có ∆ = 112 – 4.1.18 = 49 > 0 và Δ=49=7.

Do đó phương trình có hai nghiệm phân biệt là:

x1=11+721=2; x2=11721=9.

Vậy đa thức x2 + 11x + 18 phân tích được thành nhân tử như sau:

x2 + 11x + 18 = (x + 2)(x + 9).

b) 3x2 + 5x – 2.

Phương trình 3x2 + 5x – 2 = 0 có ∆ = 52 – 4.3.(–2) = 49 > 0 và Δ=49=7.

Do đó phương trình có hai nghiệm phân biệt là:

x1=5+723=13;x2=5723=2.

Vậy đa thức 3x2 + 5x – 2 phân tích được thành nhân tử như sau:

3x2+5x2=3x13x+2.

Bài 6.27 trang 24 Toán 9 Tập 2: Một bể bơi hình chữ nhật có diện tích 300 m2 và chu vi là 74 m. Tính các kích thước của bể bơi này.

Lời giải:

Gọi hai kích thước của bể bơi hình chữ nhật là x1; x­2 (m).

Ta có nửa chu vi và diện tích bể bơi hình chữ nhật lần lượt là x1 + x­2 (m) và x1x2 (m2).

Theo bài, bể bơi hình chữ nhật có chu vi 74 m nên nửa chu vi bể bơi hình chữ nhật là 74 : 2 = 37 (m), do đó x1 + x­2 = 37.

Diện tích bể bơi hình chữ nhật là 300 m2, do đó x1x2 = 300.

Khi đó, x1 và x2 là hai nghiệm của phương trình: x2 – 37x + 300 = 0.

Ta có ∆ = (–37)2 – 4.1.300 = 169 > 0 và Δ=169=13.

Suy ra phương trình trên có hai nghiệm phân biệt:

x1=37+1321=25; x2=371321=12.

Vậy chiều dài và chiều rộng của bể bơi lần lượt là 25 m và 12 m (do chiều dài luôn lớn hơn chiều rộng).

Lời giải bài tập Toán 9 Bài 20: Định lí Viète và ứng dụng hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: