Lý thuyết Cấp số nhân hay, chi tiết nhất - Toán lớp 11
Lý thuyết Cấp số nhân hay, chi tiết nhất
Tài liệu Lý thuyết Cấp số nhân hay, chi tiết nhất Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Cấp số nhân từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.
I. ĐỊNH NGHĨA
Cấp số nhân là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng đứng ngay trước nó với một số không đổi q.
Số q được gọi là công bội của cấp số nhân.
Nếu (un) là cấp số nhân với công bội q, ta có công thức truy hồi:
un+1 = unq với n ∈ N*
Đặc biệt:
+ Khi q = 0, cấp số nhân có dạng u1, 0, 0,…, 0,…
+ Khi q = 1, cấp số nhân có dạng u1, u1, u1,…, u1,…
+ Khi u1 = 0 thì với mọi q, cấp số nhân có dạng 0, 0, 0,…, 0…
II. SỐ HẠNG TỔNG QUÁT
Định lí 1
Nếu cấp số nhân có số hạng đầu u1 và công bội q thì số hạng tổng quát un được xác định bởi công thức
un = u1.qn-1 với n ≥ 2
III. TÍNH CHẤT CÁC SỐ HẠNG CỦA CẤP SỐ NHÂN
Định lí 2
Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và cuối) đều là tích của hai số hạng đứng kề với nó, nghĩa là
uk2 = uk-1.uk+1 với k ≥ 2
IV. TỔNG n SỐ HẠNG ĐẦU TIÊN CỦA MỘT CẤP SỐ NHÂN
Định lí 3
Cho cấp số nhân (un) với công bội q ≠ 1. Đặt Sn = u1 + u2 + … + un. Khi đó
Chú ý: Nếu q = 1 thì cấp số nhân là u1, u1, u1,…, u1,… khi đó Sn = nu1.