Lý thuyết Phương pháp quy nạp toán học hay, chi tiết nhất - Toán lớp 11
Lý thuyết Phương pháp quy nạp toán học hay, chi tiết nhất
Tài liệu Lý thuyết Phương pháp quy nạp toán học hay, chi tiết nhất Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Phương pháp quy nạp toán học từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.
1. Để chứng minh một mệnh đề là đúng với mọi n ∈ ℕ* bằng phương pháp quy nạp toán học, ta tiến hành hai bước:
♦ Bước 1: Kiểm tra rằng mệnh đề đúng với n = 1.
♦ Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k (k ≥ 1) (ta gọi là giả thiết quy nạp) và chứng minh rằng nó cũng đúng với n=k+1.
2. Trong trường hợp phải chứng minh một mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là số tự nhiên) thì:
♦ Ở bước 1, ta kiểm tra mệnh đề đúng với n = p.
♦ Ở bước 2, ta giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k (k ≥ p) và chứng minh rằng nó cũng đúng với n = k + 1.
3. Phép thử với một số hữu hạn số tự nhiên, tuy không phải là chứng minh, nhưng cho phép ta dự đoán được kết quả. Kết quả này chỉ là giả thiết, và để chứng minh ta có thể dùng phương pháp quy nạp toán học.