Lý thuyết Hàm số liên tục hay, chi tiết nhất - Toán lớp 11


Lý thuyết Hàm số liên tục hay, chi tiết nhất

Tài liệu Lý thuyết Hàm số liên tục hay, chi tiết nhất Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Hàm số liên tục từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.

Lý thuyết Hàm số liên tục hay, chi tiết nhất

I. HÀM SỐ LIÊN TỤC TẠI MỘT ĐIỂM

Định nghĩa 1

    Cho hàm số y = f(x) xác định trên khoảng K và x0 ∈ K.

    Hàm số y = f(x) được gọi là liên tục tại x0 nếu Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hay lắm đó

II. HÀM SỐ LIÊN TỤC TRÊN MỘT KHOẢNG

Định nghĩa 2

    Hàm số y = f(x) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm của khoảng đó.

    Hàm số y = f(x) được gọi là liên tục trên đoạn [a; b] nếu nó liên tục trên khoảng (a; b) và

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Nhận xét: Đồ thị của hàm số liên tục trên một khoảng là một đường liền trên khoảng đó.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hàm số liên tục trên khoảng (a;b)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hàm số không liên tục trên khoảng (a; b).

Hay lắm đó

III. MỘT SỐ ĐỊNH LÍ CƠ BẢN

Định lí 1

    a) Hàm số đa thức liên tục trên toàn bộ tập số thực R.

    b) Hàm số phân thức hữu tỉ và hàm số lượng giác liên tục trên từng khoảng xác định của chúng.

Định lí 2

    Giả sử y = f(x) và y = g(x) là hai hàm số liên tục tại điểm x0. Khi đó:

    a) Các hàm số y = f(x) + g(x), y = f(x) – g(x) và y = f(x).g(x) liên tục tại x0;

    b) Hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án liên tục tại x0 nếu g(x0) ≠ 0.

Định lí 3

    Nếu hàm số y = f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0, thì tồn tại ít nhất một điểm c ∈ (a; b) sao cho f(c) = 0..

Định lí 3 có thể phát biểu theo một dạng khác như sau:

    Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) < 0, thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong khoảng (a, b).

Xem thêm các dạng bài tập Toán lớp 11 chọn lọc, có lời giải hay khác: