Lý thuyết Tổng hợp chương Giới hạn hay, chi tiết nhất - Toán lớp 11
Lý thuyết Tổng hợp chương Giới hạn hay, chi tiết nhất
Tài liệu Lý thuyết Tổng hợp chương Giới hạn hay, chi tiết nhất Toán lớp 11 sẽ tóm tắt kiến thức trọng tâm về Tổng hợp chương Giới hạn từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 11.
GIỚI HẠN CỦA DÃY SỐ
I. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ
1. Định nghĩa
Định nghĩa 1
Ta nói dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.
Kí hiệu: hay un → 0 khi n → +∞.
Định nghĩa 2
Ta nói dãy số (vn) có giới hạn là a (hay vn dần tới a) khi n → +∞ nếu
Kí hiệu: hay vn → a khi n → +∞.
2. Một vài giới hạn đặc biệt
a) với k nguyên dương;
b) nếu |q| < 1;
c) Nếu un = c (c là hằng số) thì
Chú ý: Từ nay về sau thay cho ta viết tắt là lim un = a.
II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN
Định lí 1
a) Nếu lim un = a và lim vn = b thì
lim (un + vn) = a + b
lim (un – vn) = a – b
lim (un.vn) = a.b
III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN
Cấp số nhân vô hạn (un) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn:
IV. GIỚI HẠN VÔ CỰC
1. Định nghĩa
- Ta nói dãy số (un) có giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.
Kí hiệu: lim un = +∞ hay un → +∞ khi n → +∞.
- Dãy số (un) có giới hạn là –∞ khi n → +∞, nếu lim (–un) = +∞.
Kí hiệu: lim un = –∞ hay un → –∞ khi n → +∞.
Nhận xét: un = +∞ ⇔ lim(–un) = –∞
2. Một vài giới hạn đặc biệt
Ta thừa nhận các kết quả sau
a) lim nk = +∞ với k nguyên dương;
b) lim qn = +∞ nếu q > 1.
3. Định lí 2
a) Nếu lim un = a và lim vn = ±∞ thì
b) Nếu lim un = a > 0, lim vn = 0 và vn > 0, ∀ n > 0 thì
c) Nếu lim un = +∞ và lim vn = a > 0 thì
GIỚI HẠN CỦA HÀM SỐ
I. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM
1. Định nghĩa
Định nghĩa 1
Cho khoảng K chứa điểm x0 và hàm số y = f(x) xác định trên K hoặc trên K \ {x0}.
Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới x0 nếu với dãy số (xn) bất kì, xn ∈ K \{x0} và xn → x0, ta có f(xn) → L.
Kí hiệu: hay f(x) → L khi x → x0.
Nhận xét: với c là hằng số.
2. Định lí về giới hạn hữu hạn
Định lí 1
3. Giới hạn một bên
Định nghĩa 2
- Cho hàm số y = f(x) xác định trên (x0; b).
Số L được gọi là giới hạn bên phải của hàm số y = f(x) khi x → x0 nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L.
Kí hiệu:
- Cho hàm số y = f(x) xác định trên (a; x0).
Số L được gọi là giới hạn bên trái của hàm số y = f(x) khi x → x0 nếu với dãy số (xn) bất kì, a < xn < x0 và xn → x0, ta có f(xn) → L.
Kí hiệu:
Định lí 2
II. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI VÔ CỰC
Định nghĩa 3
a) Cho hàm số y = f(x) xác định trên (a; +∞).
Ta nói hàm số y = f(x) có giới hạn là số L khi x → +∞ nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L.
Kí hiệu:
b) Cho hàm số y = f(x) xác định trên (–∞; a).
Ta nói hàm số y = f(x) có giới hạn là số L khi x → –∞ nếu với dãy số (xn) bất kì, xn < a và xn → –∞, ta có f(xn) → L.
Kí hiệu:
Chú ý:
a) Với c, k là hằng số và k nguyên dương, ta luôn có:
b) Định lí 1 về giới hạn hữu hạn của hàm số khi x → x0 vẫn còn đúng khi xn → +∞ hoặc x → –∞
III. GIỚI HẠN VÔ CỰC CỦA HÀM SỐ
1. Giới hạn vô cực
Định nghĩa 4
Cho hàm số y = f(x) xác định trên (a; +∞).
Ta nói hàm số y = f(x) có giới hạn là –∞ khi x → +∞ nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → –∞
2. Một vài giới hạn đặc biệt
3. Một vài quy tắc về giới hạn vô cực
a) Quy tắc tìm giới hạn của tích f(x).g(x)
L > 0 | +∞ | +∞ |
–∞ | –∞ | |
L < 0 | +∞ | –∞ |
–∞ | +∞ |
b) Quy tắc tìm giới hạn của thương
Dấu của g(x) | |||
L | ± ∞ | Tùy ý | 0 |
L > 0 | 0 | +∞ | +∞ |
–∞ | –∞ | ||
L < 0 | +∞ | –∞ | |
–∞ | +∞ |
HÀM SỐ LIÊN TỤC
I. HÀM SỐ LIÊN TỤC TẠI MỘT ĐIỂM
Định nghĩa 1
Cho hàm số y = f(x) xác định trên khoảng K và x0 ∈ K.
Hàm số y = f(x) được gọi là liên tục tại x0 nếu
II. HÀM SỐ LIÊN TỤC TRÊN MỘT KHOẢNG
Định nghĩa 2
Hàm số y = f(x) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm của khoảng đó.
Hàm số y = f(x) được gọi là liên tục trên đoạn [a; b] nếu nó liên tục trên khoảng (a; b) và
III. MỘT SỐ ĐỊNH LÍ CƠ BẢN
Định lí 1
a) Hàm số đa thức liên tục trên toàn bộ tập số thực R.
b) Hàm số phân thức hữu tỉ và hàm số lượng giác liên tục trên từng khoảng xác định của chúng.
Định lí 2
Giả sử y = f(x) và y = g(x) là hai hàm số liên tục tại điểm x0. Khi đó:
a) Các hàm số y = f(x) + g(x), y = f(x) – g(x) và y = f(x).g(x) liên tục tại x0;
b) Hàm số liên tục tại x0 nếu g(x0) ≠ 0.
Định lí 3
Nếu hàm số y = f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0, thì tồn tại ít nhất một điểm c ∈ (a; b) sao cho f(c) = 0..
Định lí 3 có thể phát biểu theo một dạng khác như sau:
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) < 0, thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong khoảng (a, b).