Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm
Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh rằng tam giác ABC đều.
Giải vở bài tập Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác
Câu 3 trang 116 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh rằng tam giác ABC đều.
Lời giải:
Giả sử tam giác ABC có hai đường trung tuyến AM, BN cắt nhau tại G.
Do G cũng là giao điểm của các đường trung trực của tam giác ABC nên G thuộc đường trung trực của BC
Mà MB = MC nên M thuộc đường trung trực của BC
Do đó đường thẳng GM là đường trung trực của đoạn thẳng BC
Mà A thuộc đường thẳng GM nên AB = AC
Chứng minh tương tự ta cũng có BC = BA, suy ra AB = AC = BC
Vậy tam giác ABC là tam giác đều.