Giải Vở thực hành Toán 7 trang 62 Tập 2 Chân trời sáng tạo
Với Giải VTH Toán 7 trang 62 Tập 2 trong Bài 9: Tính chất ba đường phân giác của tam giác Vở thực hành Toán lớp 7 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VTH Toán 7 trang 62.
Giải VTH Toán 7 trang 62 Tập 2 Chân trời sáng tạo
Bài 5 trang 62 Vở thực hành Toán 7 Tập 2: Cho tam giác ABC, O là điểm bên trong tam giác. Từ O hạ đường vuông góc OM, ON, OP lần lượt tới các cạnh AB, BC, CA và có OM = ON = OP. Chứng minh O là giao điểm của ba đường phân giác của tam giác ABC.
Lời giải:
Xét hai tam giác OMA và OPA:
OM = OP ( gt).
.
Cạnh chung OA.
Vậy tam giác OMA bằng tam giác OPA theo trường hợp c.g.c. Suy ra hay AO là tia phân giác của góc A. (1)
Tương tự xét hai tam giác OCP và OCN:
OP = ON (gt).
.
Cạnh chung OC.
Vậy tam giác OCP bằng tam giác OCN theo trường hợp c.g.c. Suy ra hay CO là tia phân giác của góc A. (1)
Từ (1) và (2) suy ra O là giao điểm của 3 đường phân giác của tam giác ABC.
Bài 6 trang 62 Vở thực hành Toán 7 Tập 2: Cho tam giác DEF. Tia phân giác của góc D và E cắt nhau tại I. Qua I kẻ đường thẳng song song với EF, đường thẳng này cắt DE tại M, cắt DF tại N. Chứng minh rằng ME + NF = MN.
Lời giải:
Xét tam giác MIE có do:
= ( do MN // EF và đây là 2 góc so le trong).
= ( do EI là tia phân giác góc E).
Suy ra tam giác MIE cân tại M. Có MI = ME.
Tương tự, xét tam giác NIF có do:
= ( do MN // EF và đây là hai góc so le trong).
= ( do FI là tia phân giác góc F).
Suy ra tam giác NIF cân tại N. Có NI = NF.
Ta có: MN = NI + MI = NF + ME.
Vậy MN = NF + ME.
Lời giải Vở thực hành Toán 7 Bài 9: Tính chất ba đường phân giác của tam giác Chân trời sáng tạo hay khác: