Bài 1.10 trang 20 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 2: Ứng dụng hệ phương trình bậc nhất ba ẩn
Haylamdo biên soạn và sưu tầm lời giải Bài 1.10 trang 20 Chuyên đề Toán 10 trong Bài 2: Ứng dụng hệ phương trình bậc nhất ba ẩn. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Bài 1.10 trang 20 Chuyên đề Toán 10: Một tuyến cáp treo có ba loại vé sau đây: vé đi lên giá 250 nghìn đồng; vé đi xuống giá 200 nghìn đồng và vé hai chiều giá 400 nghìn đồng. Một ngày nhà ga cáp treo thu được tổng số tiền là 251 triệu đồng. Tìm số vé bán ra mỗi loại, biết rằng nhân viên quản lí cáp treo đếm được 680 lượt người đi lên và 520 lượt người đi xuống.
Lời giải:
Gọi số vé bán ra loại đi lên, đi xuống và hai chiều lần lượt là x, y, z.
Theo đề bài ta có:
– Nhà ga cáp treo thu được tổng số tiền là 251 triệu đồng, suy ra 250000x + 200000y + 400000z = 251000000 hay 250x + 200y + 400z = 251000 (1).
– Có 680 lượt người đi lên, suy ra x + z = 680 (2).
– Có 520 lượt người đi xuống, suy ra y + z = 520 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 220, y = 40, z = 460.
Vậy số vé bán ra loại đi lên, đi xuống và hai chiều lần lượt là 220, 60, 460.