Bài 1 trang 32 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học
Haylamdo biên soạn và sưu tầm lời giải Bài 1 trang 32 Chuyên đề Toán 10 trong Bài 1: Phương pháp quy nạp toán học. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Bài 1 trang 32 Chuyên đề Toán 10: Chứng minh các đẳng thức sau đúng với mọi
a)
b)
c)
Lời giải:
a) Bước 1. Với n = 1, ta có 1(1 + 1) = 2 =
Do đó đẳng thức đúng với n = 1.
Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
Sử dụng giả thiết quy nạp, ta có:
Vậy đẳng thức đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.
b) Bước 1. Với n = 1, ta có 12 = 1 =
Do đó đẳng thức đúng với n = 1.
Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
Sử dụng giả thiết quy nạp, ta có:
Vậy đẳng thức đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.
c) Bước 1. Với n = 1, ta có 21 – 1 = 20 = 1 = 21 – 1.
Do đó đẳng thức đúng với n = 1.
Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
Sử dụng giả thiết quy nạp, ta có:
Vậy đẳng thức đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n ≥ 1.