Bài 2.4 trang 30 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 3: Phương pháp quy nạp toán học
Haylamdo biên soạn và sưu tầm lời giải Bài 2.4 trang 30 Chuyên đề Toán 10 trong Bài 3: Phương pháp quy nạp toán học. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
Bài 2.4 trang 30 Chuyên đề Toán 10: Chứng minh rằng n2 – n + 41 là số lẻ với mọi số nguyên dương n.
Lời giải:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 12 – 1 + 41 = 41 là số lẻ.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: k2 – k + 41 là số lẻ.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)2 – (k + 1) + 41 là số lẻ.
Thật vậy, sử dụng giả thiết quy nạp ta có:
(k + 1)2 – (k + 1) + 41
= (k2 + 2k + 1) – (k + 1) + 41
= k2 + k + 41 = (k2 – k + 41) + 2k
Vì k2 – k + 41 là số lẻ và 2k là số chẵn nên (k2 – k + 41) + 2k là số lẻ hay (k + 1)2 – (k + 1) + 41 là số lẻ.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.