Bài 2 trang 24 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài tập cuối chuyên đề 1

Haylamdo biên soạn và sưu tầm lời giải Bài 2 trang 24 Chuyên đề Toán 10 trong Bài tập cuối chuyên đề 1. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 2 trang 24 Chuyên đề Toán 10: Giải các hệ phương trình sau bằng phương pháp Gauss:

a) x-2y+z=3-y+z=2y+2z=1;

b) 3x-2y-4z=34x+6y-z=17x+2y=5

c)x+y+z=13x-y-z=4x+5y+5z=-1

Lời giải:

a) x-2y+z=3-y+z=2y+2z=1x-2y+z=3-y+z=23z=3x-2y+z=3-y+1=2z=1x-2.(-1)+1=3y=-1z=1

x=0y=-1z=1

Vậy hệ phương trình đã cho có nghiệm duy nhất (0; –1; 1).

b) 3x-2y-4z = 34x+6y-z     =17x+2y                =53x-2y-4z = 3-13x-26y      =-65x+2y                =53x-2y-4z = 3x+2y                =5x+2y                =53x-2y-4z = 3x+2y                =5

Từ phương trình thứ hai ta có x = –2y + 5, thay vào phương trình thứ nhất ta được z = –2y + 3. Vậy hệ phương trình đã cho có vô số nghiệm dạng (–2y + 5; y; –2y + 3).

c) x+y+z=13x-y-z=4x+5y+5z=-1x+y+z=14y+4z=-1x+5y+5z=-1x+y+z=14y+4z=-1-4y-4z=2x+y+z=14y+4z=-10y+0z=1

Vì phương trình thứ ba của hệ vô nghiệm nên hệ đã cho vô nghiệm.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Chân trời sáng tạo hay, chi tiết khác: