Khám phá 3 trang 67 Chuyên đề Toán 12 Chân trời sáng tạo
Một công ty dược nhận thấy xác suất một bệnh nhân có phản ứng phụ khi được điều trị bằng một loại thuốc M là 0,08. Chọn ngẫu nhiên 10 000 bệnh nhân được điều trị một cách độc lập bằng thuốc M. Gọi X là số bệnh nhân có phản ứng phụ trong 10 000 bệnh nhân đó. Hãy viết biểu thức tính kì vọng của X.
Giải Chuyên đề Toán 12 Bài 2: Phân bố Bernoulli và phân bố nhị thức - Chân trời sáng tạo
Khám phá 3 trang 67 Chuyên đề Toán 12: Một công ty dược nhận thấy xác suất một bệnh nhân có phản ứng phụ khi được điều trị bằng một loại thuốc M là 0,08. Chọn ngẫu nhiên 10 000 bệnh nhân được điều trị một cách độc lập bằng thuốc M. Gọi X là số bệnh nhân có phản ứng phụ trong 10 000 bệnh nhân đó. Hãy viết biểu thức tính kì vọng của X.
Lời giải:
Gọi T là phép thử “Chọn ngẫu nhiên một bệnh nhân”. Theo đề bài, phép thử T được lặp lại 10 000 lần một cách độc lập. Gọi A là biến cố “Bệnh nhân có phản ứng phụ với thuốc M”. Ta có P(A) = 0,08.
Gọi Xk là biến cố “Có k bệnh nhân có phản ứng phụ trong 10 000 bệnh nhân đó”, với k = 0, 1, …, 10 000. Áp dụng công thức Bernoulli, ta có:
với k = 0, 1, 2, …, 10 000.
Kì vọng của X là:
E(X) = 0 . P(X = 0) + 1 . P(X = 1) + … + k . P(X = k) + … + 10 000 . P(X = 10 000)
Lời giải bài tập Chuyên đề Toán 12 Bài 2: Phân bố Bernoulli và phân bố nhị thức hay, chi tiết khác: