Khởi động trang 15 Chuyên đề Toán 12 Chân trời sáng tạo
Một người đang ở vị trí A muốn đi đến vị trí B trên bờ hồ như hình bên. Biết rằng người đó chèo thuyền với tốc độ 50 m/phút và chạy bộ với tốc độ 100 m/phút. Nếu người đó chèo thuyền thẳng từ A đến B thì tốn bao nhiêu thời gian? Có phương án nào tốn ít thời gian hơn không?
Giải Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu - Chân trời sáng tạo
Khởi động trang 15 Chuyên đề Toán 12: Một người đang ở vị trí A muốn đi đến vị trí B trên bờ hồ như hình bên. Biết rằng người đó chèo thuyền với tốc độ 50 m/phút và chạy bộ với tốc độ 100 m/phút. Nếu người đó chèo thuyền thẳng từ A đến B thì tốn bao nhiêu thời gian? Có phương án nào tốn ít thời gian hơn không?
Lời giải:
Sau bài học này, ta giải quyết được bài toán trên như sau:
Áp dụng định lý Pythagore, ta tính được AB = 500 m.
Do đó, nếu người đó chèo thuyền thẳng từ A đến B thì tốn phút.
Ta xem xét phương án sau:
Giả sử người đó chèo thuyền thẳng đến điểm D nằm giữa B và C và cách C một đoạn x (m), rồi chạy bộ thẳng đến B.
Ta cần tìm giá trị của x để người đó tốn ít thời gian nhất.
Ta có: (m); DB = 400 – x (m) với 0 ≤ x ≤ 400.
Thời gian người đó tiêu tốn là
(phút).
Xét hàm số với 0 ≤ x ≤ 400, ta có:
;
y' = 0 ⇔ ⇔ 4x2 = x2 + 90 000
⇔ x2 = 30 000 ⇔ x = ∈ [0; 400].
Ta có y(0) = 1 000; ; y(400) = 1 000.
Vậy .
Suy ra giá trị nhỏ nhất của t là (phút), đạt được khi x = ≈ 173 (m).
Do đó, người đó tốn ít thời gian nhất khi x = ≈ 173 (m).
Nhận thấy 9,2 phút < 10 phút nên người đó chèo thuyền từ A thẳng đến điểm D nằm giữa B và C và cách C một đoạn xấp xỉ bằng 173 m, rồi chạy bộ thẳng đến B là phương án tốn ít thời gian nhất.
Lời giải bài tập Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu hay, chi tiết khác: