Rút gọn các biểu thức sin(a + b).sin(a – b) = sin^2a – sin^2b = cos^2b – cos^2a
Bài 3: Công thức lượng giác
Bài 4 trang 154 Toán 10: Rút gọn các biểu thức:
Chứng minh các đẳng thức:
b) sin(a + b).sin(a – b) = sin2a – sin2b = cos2b – cos2a
c) cos(a + b).cos(a – b) = cos2a – sin2b = cos2b – sin2a
Trả lời
Chú ý: Có thể biến vế phải thành vế trái.
b) sin(a + b).sin(a – b) = sin2a – sin2b = cos2b – cos2a
= sin(a+b).sin(a-b)
= (sina.cosb + sinb.cosa).(sina.cosb – sinb.cosa)
= sin2a.cos2b – sin2b.cos2a
= sin2a(1-sin2b) – sin2b(1-sin2a)
= sin2a – sin2b (đpcm)
= 1 – cos2a – (1 – cos2b)
= cos2b – cos2a (đpcm)
c) cos(a + b).cos(a – b) = cos2a – sin2b = cos2b – sin2a
= cos(a + b) – cos(a-b)
= (cosa.cosb – sina.sinb)(cosa.cosb + sina.sinb)
= cos2a.cos2b – sin2a.sin2b
= cos2a – sin2b (đpcm)
= cos2b – sin2a (đpcm)