X

Giải bài tập Toán lớp 12 nâng cao

Khảo sát sự biến thiên và vẽ đồ thị hàm số: y = x - 1/x + 1


Luyện tập (trang 57-58)

Haylamdo biên soạn và sưu tầm lời giải Bài 62 trang 57 sgk Giải Tích 12 nâng cao được biên soạn lời giải chi tiết sẽ giúp bạn biết cách làm bài tập môn Toán 12.

Bài 62 (trang 57 sgk Giải Tích 12 nâng cao):

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

b) Chứng minh rằng giao điểm I của hai đường tiệm cận của đường cong đã cho là tâm đối xứng của nó.

Lời giải:

a) TXĐ: D = R \ {-1}

Sự biến thiên:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

⇒ Hàm số luôn đồng biến trên D.

Giới hạn:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

⇒ Đồ thị có 1 tiệm cận đứng là đường thẳng x = -1

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

⇒ Đồ thị hàm số nhận đường thẳng y = 1 làm tiệm cận ngang

Bảng biến thiên:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Đồ thị hàm số

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Giao với Ox: (1; 0)

Giao với Oy: (0; -1)

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

b) Ta có giao điểm của 2 tiệm cận I(-1; 1)

Áp dụng công thức đổi trục

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Thay vào hàm số

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Đây là hàm số lẻ nên đồ thị hàm số đã cho nhận I(-1; 1) làm tâm đối xứng.

Xem thêm các bài giải bài tập sgk Toán 12 nâng cao hay khác: