X

Giải bài tập Toán 12

Cho hàm số: y = x3 + (m + 3)x2 + 1 - m (m là tham số) có đồ thị Cm


Toán lớp 12 Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 8 (trang 44 SGK Giải tích 12): Cho hàm số:

y = x3 + (m + 3)x2 + 1 - m (m là tham số)

có đồ thị (Cm).

a) Xác định m để hàm số có điểm cực đại là x = -1.

b) Xác định m để đồ thị (Cm) cắt trục hoành tại x = -2.

Lời giải:

a) Xét hàm số y = x3 + (m + 3)x2 + 1 – m.

+ TXĐ : D = R.

+ y’ = 3x2 + 2(m + 3).x

⇒ y’’ = 6x + 2(m + 3).

+ Hàm số có điểm cực đại là x = -1

Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Vậy với Giải bài 8 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 thì hàm số có điểm cực đại là x = -1.

b) Đồ thị (Cm) cắt trục hoành tại x = -2

⇔ y(-2) = 0

⇔ (-2)3 + (m + 3)(-2)2 + 1 - m = 0

⇔ -8 + 4(m + 3) + 1 - m = 0

⇔ 3m + 5 = 0

⇔ m = -5/3

Kiến thức áp dụng

+ Hàm số y = f(x) có đạo hàm cấp hai trong khoảng K, khi đó, với y0 ∈ K ta có:

Nếu f’(y0) = 0 và f’’(y0) < 0 thì y0 là điểm cực đại.

Xem thêm các bài giải bài tập Toán 12 hay khác: