X

Giải bài tập Toán 12

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trang 46 sgk Giải tích 12


Toán lớp 12 Bài ôn tập chương I

Bài 9 (trang 46 SGK Giải tích 12): a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

b) Viết phương tình tiếp tuyến của đồ thị (C) tại điểm có hoành độ là nghiệm của phương trình f"(x) = 0.

c) Biện luận theo tham số m số nghiệm của phương trình: x4 - 6x2 + 3 = m.

Lời giải:

a) Khảo sát hàm số Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

- TXĐ: D = R

- Sự biến thiên:

+ Chiều biến thiên:

f'(x) = 2x3 - 6x = 2x(x2 - 3)

f'(x) = 0 ⇔ 2x(x2 - 3) = 0 ⇔ x = 0; x = ±√3

+ Giới hạn tại vô cực:

Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên:

Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận: Hàm số đồng biến trên (-√3; 0) và (√3; +∞).

Hàm số nghịch biến trên (-∞; -√3) và (0; √3).

Hàm số đạt cực đại tại x = 0, y = Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực tiểu tại x = Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12 ; yCT = -3.

- Đồ thị:

+ Đồ thị hàm số nhận trục tung là trục đối xứng.

+ Đồ thị cắt trục tung tại (0; 1,5).

Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

b) Ta có: f"(x) = 6x2 - 6 = 6(x2 - 1)

f"(x) = 0 ⇔ 6(x2 - 1) ⇔ x = ±1 ⇒ y = -1

Phương trình tiếp tuyến của (C) tại (-1; -1) là:

y = f'(-1)(x + 1) - 1 ⇒ y = 4x + 3

Phương trình tiếp tuyến của (C) tại (1; -1) là:

y = f'(1)(x - 1) - 1 ⇒ y = -4x + 3

c) Ta có: x4 - 6x2 + 3 = m

Giải bài 9 trang 46 sgk Giải tích 12 | Để học tốt Toán 12

Số nghiệm của phương trình (*) chính bằng số giao điểm của đồ thị (C) và đường thẳng (d) y = m/2.

Từ đồ thị (C) nhận thấy :

+ m/2 < - 3 ⇔ m < -6

⇒ đường thẳng (d) không cắt đồ thị (C)

⇒ Phương trình vô nghiệm.

+ m/2 = -3 ⇔ m = -6

⇒ đường thẳng (d) cắt đồ thị (C) tại hai điểm cực tiểu

⇒ Phương trình có 2 nghiệm.

+ -3 < m/2 < 3/2 ⇔ -6 < m < 3

⇒ đường thẳng (d) cắt (C) tại 4 điểm phân biệt

⇒ Phương trình có 4 nghiệm.

+ m/2 = 3/2 ⇔ m = 3

⇒ đường thẳng (d) cắt (C) tại ba điểm

⇒ phương trình có 3 nghiệm.

+ m/2 > 3/2 ⇔ m > 3

⇒ đường thẳng (d) cắt (C) tại hai điểm

⇒ phương trình có hai nghiệm phân biệt.

Vậy:

+) m < - 6 thì phương trình vô nghiệm.

+) m = - 6 hoặc m > 3 thì PT có 2 nghiệm.

+) m = 3 thì PT có 3 nghiệm.

+) – 6 < m < 3 thì PT có 4 nghiệm.

Xem thêm các bài giải bài tập Toán 12 hay khác: