Giải bóng chuyền gồm 9 đội tham dự, trong đó có 3 đội của nước X


Giải bóng chuyền gồm 9 đội tham dự, trong đó có 3 đội của nước X. Ban tổ chức cho bốc thăm ngẫu nhiên để xếp các đội vào 3 bảng A, B, C và mỗi bảng có 3 đội. Tính số cách xếp sao cho 3 đội bóng của nước X ở 3 bảng khác nhau.

Giải sách bài tập Toán 10 Bài tập cuối chương 5

Bài 48 trang 18 SBT Toán 10 Tập 2: Giải bóng chuyền gồm 9 đội tham dự, trong đó có 3 đội của nước X. Ban tổ chức cho bốc thăm ngẫu nhiên để xếp các đội vào 3 bảng A, B, C và mỗi bảng có 3 đội. Tính số cách xếp sao cho 3 đội bóng của nước X ở 3 bảng khác nhau.

Lời giải:

Mỗi cách xếp 3 đội của nước X vào 3 bảng khác nhau thì có 3! = 6 cách xếp.

Xếp 6 đội còn lại vào 3 bảng A, B, C, mỗi bảng 2 đội là thực hiện ba công việc liên tiếp: Xếp 2 đội vào bảng A, sau đó xếp 2 đội vào bảng B, cuối cùng xếp 2 đội vào bảng C.

Xếp 2 đội trong 6 đội còn lại vào bảng A thì có C62 cách xếp.

Xếp 2 đội trong 4 đội còn lại vào bảng B thì có C42 cách xếp.

Xếp 2 đội trong 2 đội còn lại vào bảng C thì có C22 cách xếp.

Do đó xếp 6 đội còn lại vào 3 bảng A, B, C thì có C62.C42.C22=90 cách xếp.

Vậy số cách xếp sao cho 3 đội bóng của nước X ở 3 bảng khác nhau là: 6.90 = 540 cách xếp.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: