Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 x=2+(căn3)t, y=-1+3t và ∆2 x=3-(căn3)t', y=-t'


Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng và :

Giải sách bài tập Toán 10 Bài tập cuối chương 7

Bài 75 trang 98 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 x=2+(căn3)t, y=-1+3t và ∆2 x=3-(căn3)t', y=-t'Δ2: Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 x=2+(căn3)t, y=-1+3t và ∆2 x=3-(căn3)t', y=-t'

Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:

A. 300;

B. 450;

C. 900;

D. 600.

Lời giải:

Ta thấy vectơ chỉ phương của Δ1 là: u1=(3;3)

Vectơ chỉ phương của Δ2 là: u2=(-3;-1)

Ta có: cos(u1,u2)

= Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 x=2+(căn3)t, y=-1+3t và ∆2 x=3-(căn3)t', y=-t'

Suy ra (u1,u2) = 150o

Suy ra góc giữa 2 đường thẳng chính là góc nhọn giữa 2 vectơ chỉ phương của 2 đường thẳng đó.

Do đó (Δ1,Δ2)=180o-(u1,u2)=30o

Vậy chọn đáp án A.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: