Tam giác ABC có a = 19, b = 6 và c = 15


Tam giác ABC có a = 19, b = 6 và c = 15.

Sách bài tập Toán 10 Kết nối tri thức Bài 6: Hệ thức lượng trong tam giác

Bài 3.8 trang 38 sách bài tập Toán lớp 10 Tập 1: Tam giác ABC có a = 19, b = 6 và c = 15.

a) Tính cosA.

b) Tính diện tích tam giác.

c) Tính độ dài đường cao hc.

d) Tính độ dài bán kính đường tròn nội tiếp của tam giác.

Lời giải:

a) Áp dụng định lí côsin cho DABC ta có:

a2 = b2 + c2 – 2bc.cosA

cosA =b2+c2a22bc=62+1521922.6.15=59.

Vậy cosA = 59.

b) Tam giác ABC có a = 19, b = 6 và c = 15

Khi đó:

p=a+b+c2=19+6+152=20.

p – a = 1;

p – b = 14;

p – c = 5.

Áp dụng công thức Heron ta có:

S=ppapbpc=20.1.14.5=1014.

Vậy diện tích DABC bằng 1014.

c) Áp dụng công thức diện tích tam giác ta có:

Sb=12chc

hc=2Sc=2.101415=4143.

Vậy độ dài đường cao hc=4143.

d) Áp dụng công thức diện tích tam giác ta có:

S = pr r=Sp=101420=142.

Vậy bán kính đường tròn nội tiếp tam giác ABC bằng 142.

Xem thêm các bài giải sách bài tập Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác: