Cho tam giác ABC có a = 4, góc C = 60 độ b = 5


Cho tam giác ABC có a = 4,

Sách bài tập Toán 10 Kết nối tri thức Bài 6: Hệ thức lượng trong tam giác

Bài 3.9 trang 39 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC có a = 4, C^=60°, b = 5.

a) Tính các góc và cạnh còn lại của tam giác.

b) Tính diện tích của tam giác.

c) Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác.

Lời giải:

Áp dụng định lí côsin cho DABC ta có:

c2 = a2 + b2 – 2ab.cosC

Þ c2 = 42 + 52 – 2.4.5.cos60°

= 16 + 25 – 40.12 = 21.

c = 21.

Áp dụng định lí sin ta có: asinA=bsinB=csinC

Do đó:

sinB=sinCc.b=sin60°21.5=5714.

B^70°53'36''

sinA=sinCc.a=sin60°21.4=277.

A^49°6'24''

Vậy c=21;A^49°6'24'';B^70°53'36''.

b) Áp dụng công thức tính diện tích tam giác ta có:

S=12.absinC=12.4.5.sin60°=53.

Vậy diện tích tam giác ABC bằng 53.

c) Áp dụng công thức tính độ dài đường trung tuyến trong phần Nhận xét của Ví dụ 3, trang 37, Sách bài tập, Toán 10, Tập một ta có:

ma2=b2+c22a24=52+2122424=19.

ma=19.

Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC bằng 19.

Xem thêm các bài giải sách bài tập Toán lớp 10 sách Kết nối tri thức hay, chi tiết khác: