Giải bất phương trình f’(x) < 0, biết: f(x) = x^3 – 9x^2 + 24x
Giải sách bài tập Toán 11 Bài 2: Các quy tắc tính đạo hàm
Bài 20 trang 73 SBT Toán 11 Tập 2: Giải bất phương trình f’(x) < 0, biết:
a) f(x) = x3 – 9x2 + 24x; b) f(x) = –log5(x + 1).
Lời giải:
a) Ta có: f’(x) = 3x2 – 18x + 24.
Khi đó, f’(x) < 0 ⇔ 3x2 – 18x + 24 < 0
⇔ x2 – 6x + 8 < 0
⇔ (x – 2)(x – 4) < 0
⇔ 2 < x < 4.
Vậy bất phương trình có tập nghiệm là S = (2; 4).
b) Ta có:
Khi đó, f’(x) < 0
⇔ x + 1 > 0
⇔ x > –1.
Vậy bất phương trình có tập nghiệm là S = (–1; +∞).
Lời giải SBT Toán 11 Bài 2: Các quy tắc tính đạo hàm hay khác:
Bài 12 trang 73 SBT Toán 11 Tập 2: Cho hàm số f(x) = cos3x. Khi đó f’(x) bằng:....
Bài 13 trang 73 SBT Toán 11 Tập 2: Cho hàm số f(x) = sin(x2). Khi đó f’(x) bằng:....
Bài 14 trang 73 SBT Toán 11 Tập 2: Cho hàm số Khi đó f’(x) bằng:....
Bài 15 trang 73 SBT Toán 11 Tập 2: Cho hàm số f(x) = e2x. Khi đó f’(x) bằng:....
Bài 16 trang 73 SBT Toán 11 Tập 2: Cho hàm số f(x) = ln(3x). Khi đó f’(x) bằng:....
Bài 17 trang 73 SBT Toán 11 Tập 2: Tính đạo hàm của mỗi hàm số sau tại điểm x0 = 2: ....
Bài 18 trang 73 SBT Toán 11 Tập 2: Tìm đạo hàm của mỗi hàm số sau: ....
Bài 19 trang 73 SBT Toán 11 Tập 2: Cho hàm số f(x) = 23x – 6. Giải phương trình f’(x) = 3ln2....