Cho tứ diện ABCD. Trên cạnh CD lấy hai điểm M và N khác nhau


Cho tứ diện ABCD. Trên cạnh CD lấy hai điểm M và N khác nhau. Chứng minh rằng các đường thẳng AM và BN không cắt nhau.

Giải SBT Toán 11 Cánh diều Bài tập cuối chương 4

Bài 55 trang 118 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Trên cạnh CD lấy hai điểm M và N khác nhau. Chứng minh rằng các đường thẳng AM và BN không cắt nhau.

Lời giải:

Cho tứ diện ABCD. Trên cạnh CD lấy hai điểm M và N khác nhau

Giả sử hai đường thẳng AM và BN cắt nhau.

Khi đó, qua AM và BN có một mặt phẳng (P).

Do M, N thuộc (P) nên đường thẳng MN nằm trong (P) hay CD nằm trong (P).

Suy ra A, B, C, D cùng thuộc một mặt phẳng, mâu thuẫn với giả thiết.

Vậy AM và BN không cắt nhau.

Lời giải Sách bài tập Toán lớp 11 Bài tập cuối chương 4 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác: