Cho hình chóp S.ABCD, đáy ABCD là hình thang có đáy lớn AB và AD = a
Cho hình chóp S.ABCD, đáy ABCD là hình thang có đáy lớn AB và AD = a. Mặt bên SAB là tam giác cân tại S, SA = a; mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q.
Giải sách bài tập Toán 11 Bài tập cuối chương 4 - Chân trời sáng tạo
Bài 6 trang 134 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD, đáy ABCD là hình thang có đáy lớn AB và AD = a. Mặt bên SAB là tam giác cân tại S, SA = a; mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q.
a) Chứng minh MNPQ là hình thang cân.
b) Đặt x = AM với 0 < x < a. Tính MQ theo a và x.
Lời giải:
a) Ta có (ABCD) ∩ (R) = MN, (ABCD) ∩ (SAB) = AB
Mà (R) // (SAB) nên MN // AB.
Tương tự, các mặt phẳng (SAD), (SCB), (SDC) cắt hai mặt phẳng song song (R) và (SAB) theo các cặp giao tuyến song song.
Suy ra MQ // SA, NP // SB, QP // CD // AB.
Do đó QP // MN nên MNPQ là hình thang.
Ta có (hệ quả định lí Thalès) và SA = SB, suy ra MQ = NP.
Vậy MNPQ là hình thang cân.
b) Ta có => => MQ = a - x.
Lời giải Sách bài tập Toán lớp 11 Bài tập cuối chương 4 hay khác:
Câu 1 trang 132 SBT Toán 11 Tập 1: Các yếu tố nào sau đây xác định một mặt phẳng duy nhất? ....
Câu 5 trang 132 SBT Toán 11 Tập 1: Trong không gian, hai đường thẳng không có điểm chung thì ....