Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, biết SO vuông góc (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, biết SO (ABCD), AC = 2a, BD = 2a và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng . Tính theo a thể tích khối chóp S.ABCD.
Giải sách bài tập Toán 11 Bài 27: Thể tích - Kết nối tri thức
Bài 7.37 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, biết SO (ABCD), AC = 2a, BD = 2a và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng . Tính theo a thể tích khối chóp S.ABCD.
Lời giải:
Kẻ OM BC tại M mà BC SO (do SO (ABCD)) nên BC (SOM).
Kẻ OH SM tại H mà OH BC (do BC (SOM)) nên OH (SBC).
Suy ra d(O, (SBC)) = OH.
Do ABCD là hình thoi tâm O nên O là trung điểm của AC, do đó
d(A, (SBC)) = 2 . d(O, (SBC)) = 2 . OH = .
Suy ra OH = .
Vì ABCD là hình thoi tâm O nên O là trung điểm của AC, BD nên OB = = a;
OC = = a.
Do ABCD là hình thoi nên AC BD.
Xét tam giác OBC vuông tại O, OM là đường cao: ta có
.
Vì SO (ABCD) nên SO OM.
Xét tam giác SOM vuông tại O, OH là đường cao, ta có
.
Vậy .AC.BD.SO = .
Lời giải SBT Toán 11 Bài 27: Thể tích hay khác:
Bài 7.33 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA (ABC); AB = a, AC = a và , ....
Bài 7.36 trang 41 SBT Toán 11 Tập 2: Cho tứ diện OABC có OA = OB = OC = a và ; ; ....