Trong không gian Oxyz cho hai đường thẳng trang 29 SBT Toán 12 Tập 2


Giải sách bài tập Toán 12 Bài 15: Phương trình đường thẳng trong không gian - Kết nối tri thức

Bài 5.11 trang 29 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng:

d: x=1+2ty=2+tz=43t và d': x=12sy=2sz=5+3s.

a) Chứng minh rằng d // d'.

b) Viết phương trình mặt phẳng (P) chứa d và d'.

Lời giải:

a) Ta có: ud = (2; 1; −3) và ud' = (−2; −1; 3) = −1(2; 1; −3) là hai vectơ cùng phương và điểm A(1; −2; 4) thuộc đường thẳng d nhưng không thuộc d' (do thay A và d' thì hệ 12s=12s=25+3s=4 vô nghiệm).

Do đó, d ∥ d'.

b) Ta có: ud = (2; 1; −3).

Lấy A(1; −2; 4) ∈ d và B(1; 2; 5) ∈ d'AB = (0; 4; 1).

Do (P) chứa hai đường thẳng d và d' nên vectơ pháp tuyến của mặt phẳng (P) là

nP=ud,AB=1341;3210;2104 = (13; −2; 8).

Phương trình mặt phẳng (P) là:

13(x – 1) – 2(y + 2) + 8(z – 4) = 0

⇔ 13x – 2y + 8z – 49 = 0.

Lời giải Sách bài tập Toán lớp 12 Bài 15: Phương trình đường thẳng trong không gian hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: