Trong không gian Oxyz hai con đường tại một nút giao thông tương ứng


Giải sách bài tập Toán 12 Bài 16: Công thức tính góc trong không gian - Kết nối tri thức

Bài 5.20 trang 32 SBT Toán 12 Tập 2: Trong không gian Oxyz, hai con đường tại một nút giao thông tương ứng thuộc hai đường thẳng:

1: x21=y+12=z1 và ∆2: x+13=y21=z+14.

a) Nút giao thông trên có phải là nút giao thông khác mức hay không?

b) Tại nút giao thông nói trên, hai con đường tạo với nhau một góc bằng bao nhiêu độ?

Lời giải:

Đường thẳng ∆1 qua điểm A(2; −1; 0) và có vectơ chỉ phương u1 = (1; 2; 1).

Đường thẳng ∆2 qua điểm B(−1; 2; −1) có vectơ chỉ phương u2 = (3; 1; 4).

a) Ta có: AB = (−3; 3; −1), u1,u2 = (7; −1; −5).

u1,u2.AB = −19 ≠ 0.

Suy ra ∆1 và ∆2 chéo nhau.

Vậy nút giao thông đó là nút giao thông khác mức.

b) Ta có: cos(∆1, ∆2) = u1,u2u1.u2

                                  =1.3+2.1+1.412+22+12.32+12+42 = 9156.

⇒ (∆1, ∆2) ≈ 43,9°.

Lời giải Sách bài tập Toán lớp 12 Bài 16: Công thức tính góc trong không gian hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: