Có hai túi kẹo. Túi I có 3 chiếc kẹo sô cô la đen và 2 chiếc kẹo sô cô la trắng


Có hai túi kẹo. Túi I có 3 chiếc kẹo sô cô la đen và 2 chiếc kẹo sô cô la trắng. Túi II có 4 chiếc kẹo sô cô la đen và 3 chiếc kẹo sô cô la trắng. Từ túi I lấy ngẫu nhiên một chiếc kẹo. Nếu là chiếc kẹo sô cô la đen thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Nếu là chiếc kẹo sô cô la trắng thì thêm 2 chiếc kẹo sô cô la trắng vào túi thứ II. Sau đó từ túi II lấy ngẫu nhiên một chiếc kẹo. Tính xác suất lấy được chiếc kẹo sô cô la trắng.

Giải sách bài tập Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes - Kết nối tri thức

Bài 6.9 trang 45 SBT Toán 12 Tập 2: Có hai túi kẹo. Túi I có 3 chiếc kẹo sô cô la đen và 2 chiếc kẹo sô cô la trắng. Túi II có 4 chiếc kẹo sô cô la đen và 3 chiếc kẹo sô cô la trắng. Từ túi I lấy ngẫu nhiên một chiếc kẹo. Nếu là chiếc kẹo sô cô la đen thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Nếu là chiếc kẹo sô cô la trắng thì thêm 2 chiếc kẹo sô cô la trắng vào túi thứ II. Sau đó từ túi II lấy ngẫu nhiên một chiếc kẹo. Tính xác suất lấy được chiếc kẹo sô cô la trắng.

Lời giải:

Gọi A là biến cố: “Lấy được chiếc kẹo sô cô la đen từ túi I”

       B là biến cố: “Lấy được chiếc kẹo sô cô la trắng từ túi II”.

Ta có: P(A) = 35 , P(A¯) = 25 .

Nếu A xảy ra tức là lấy được chiếc kẹo sô cô la đen từ túi I thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Khi đó túi II có 9 chiếc kẹo với 6 chiếc sô cô la đen, 3 chiếc kẹo sô cô la trắng.

Nếu A không xảy ra tức là chọn được chiếc kẹo sô cô la trắng từ túi I thì thêm 2 chiếc kẹo sô cô la trắng vào túi II. Khi đó túi II có 9 chiếc kẹo với 4 chiếc sô cô la đen, 5 chiếc sô cô la trắng.

Vậy P(B | A) = 39 , P(B | A¯ ) = 59 .

Theo công thức tính xác suất toàn phần, ta được:

P(B) = P(A).P(B | A) + P(A¯).P(B | A¯ )

        = 35.39+25.59=1945 .

Lời giải Sách bài tập Toán lớp 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: