Số lượng xe du lịch được bán ra tại một nước từ năm 1983 tới năm 1996
Giải sách bài tập Toán lớp 7 Bài 3: Phép cộng và phép trừ đa thức một biến
Bài 9 trang 31 sách bài tập Toán lớp 7 Tập 2: Số lượng xe du lịch được bán ra tại một nước từ năm 1983 tới năm 1996 được mô tả theo công thức C = –0,016t4 + 0,49t3 – 4,8t2 + 14t + 70 (tính bằng đơn vị nghìn chiếc), trong khi đó số xe tải thì tính theo T = –0,01t4 + 0,31t3 – 3t2 + 11t + 23, với t là số năm tính từ 1983. Viết biểu thức biểu thị số xe (cả xe du lịch và xe tải) được bán ra trong khoảng thời gian nêu trên. Tính số xe được bán ra vào năm 1990 (ứng với t = 7).
Lời giải:
Tổng số xe được bán ra biểu thị bởi:
C + T
= (–0,016t4 + 0,49t3 – 4,8t2 + 14t + 70) + (–0,01t4 + 0,31t3 – 3t2 + 11t + 23)
= –0,016t4 + 0,49t3 – 4,8t2 + 14t + 70 – 0,01t4 + 0,31t3 – 3t2 + 11t + 23
= (–0,016t4 – 0,01t4) + (0,49t3 + 0,31t3) + (–4,8t2 – 3t2) + (14t + 11t) + (70 + 23)
= – 0,026t4 + 0,8t3 – 7,8t2 + 25t + 93
Khi t = 7 thay vào biểu thức C + T ở trên ta có:
C + T = – 0,026 . 74 + 0,8 . 73 – 7,8 . 72 + 25 . 7 + 93
= –0,026 . 2 401 + 0,8 . 343 – 7,8 . 49 + 175 + 93
= –62,426 + 274,4 – 382,2 + 175 + 93
= 97,774 (nghìn chiếc) = 97 774 chiếc.
Vậy số xe bán ra vào năm 1990 là 97774 chiếc.