Cho tam giác ABC có AB = 12 cm, AC = 18 cm, BC = 27 cm. Điểm D thuộc cạnh BC


Cho tam giác ABC có AB = 12 cm, AC = 18 cm, BC = 27 cm. Điểm D thuộc cạnh BC sao cho CD = 12 cm. Tính độ dài AD.

Giải SBT Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác - Cánh diều

Bài 38 trang 75 SBT Toán 8 Tập 2: Cho tam giác ABC có AB = 12 cm, AC = 18 cm, BC = 27 cm. Điểm D thuộc cạnh BC sao cho CD = 12 cm. Tính độ dài AD.

Lời giải:

Cho tam giác ABC có AB = 12 cm, AC = 18 cm, BC = 27 cm. Điểm D thuộc cạnh BC

Ta có: ACDC=1812=32; CBCA=2718=32.

Suy ra ACDC=CBCA=32.

Xét ∆ACB và ∆DCA có:

ACDC=CBCAACB^ là góc chung

Suy ra ∆ACB ᔕ ∆DCA (c.g.c).

Do đó ACDC=ABDA (tỉ số đồng dạng)

Hay 1812=12AD nên AD=121218=8  (cm).

Vậy AD = 8 cm.

Lời giải SBT Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác: