X

SBT Toán 9 Cánh diều

Cho biểu thức A Rút gọn biểu thức A. Tính giá trị của biểu thức A tại x = 121


Cho biểu thức:

Giải SBT Toán 9 Bài tập cuối chương 3 - Cánh diều

Bài 48 trang 69 SBT Toán 9 Tập 1: Cho biểu thức:

A=x+1x1+x1x+13x+1x1với x ≥ 0, x ≠ 1.

a) Rút gọn biểu thức A.

b) Tính giá trị của biểu thức A tại x = 121.

c) Tìm giá trị của x để A=12.

d) Tìm giá trị của x để A=x1.

Lời giải:

a) Với x ≥ 0, x ≠ 1, ta có:

Cho biểu thức A Rút gọn biểu thức A. Tính giá trị của biểu thức A tại x = 121

Vậy với x ≥ 0, x ≠ 1 thì A=2x1x+1.

b) Thay x = 121 (thỏa mãn) vào biểu thức A=2x1x+1, ta có:

A=21211121+1=211111+1=2112.

Giá trị của biểu thức A tại x = 121 là 2112

c) Với x ≥ 0, x ≠ 1, để A=12 thì 2x1x+1=12

Suy ra 22x12x+1=x+12x+1

Cho biểu thức A Rút gọn biểu thức A. Tính giá trị của biểu thức A tại x = 121

     x = 1 (không thoả mãn x ≥ 0, x ≠ 1).

Vậy không có giá trị nào của x để A=12.

d) Với x ≥ 0, x ≠ 1, để A=x1 thì 2x1x+1=x1.

Suy ra 2x1=x1x+1

Cho biểu thức A Rút gọn biểu thức A. Tính giá trị của biểu thức A tại x = 121

Suy ra x=0 hoặc x=2.

Vì vậy x = 0 (thoả mãn x ≥ 0, x ≠ 1) hoặc x = 4 (thoả mãn x ≥ 0, x ≠ 1).

Vậy x = 0 hoặc x = 4 thì A=x1.

Lời giải SBT Toán 9 Bài tập cuối chương 3 hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: