Một ô tô di chuyển trên quãng đường AB với tốc độ 60 km/h, rồi tiếp tục di chuyển trên quãng đường BC
Một ô tô di chuyển trên quãng đường AB với tốc độ 60 km/h, rồi tiếp tục di chuyển trên quãng đường BC với tốc độ 55 km/h. Biết tổng chiều dài quãng đường AB và BC là 200 km và thời gian ô tô đi hết quãng đường AB ít hơn thời gian đi hết quãng đường BC là 30 phút. Tính thời gian ô tô di chuyển hết mỗi quãng đường.
Giải sách bài tập Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn - Chân trời sáng tạo
Bài 5 trang 14 sách bài tập Toán 9 Tập 1: Một ô tô di chuyển trên quãng đường AB với tốc độ 60 km/h, rồi tiếp tục di chuyển trên quãng đường BC với tốc độ 55 km/h. Biết tổng chiều dài quãng đường AB và BC là 200 km và thời gian ô tô đi hết quãng đường AB ít hơn thời gian đi hết quãng đường BC là 30 phút. Tính thời gian ô tô di chuyển hết mỗi quãng đường.
Lời giải:
Đổi 30 phút = 0,5 giờ.
Gọi x (giờ) và y (giờ) lần lượt là thời gian ô tô di chuyển hết quãng đường AB và BC (x > 0, y > 0).
Do thời gian ô tô đi hết quãng đường AB ít hơn thời gian đi hết quãng đường BC là 30 phút nên ta có y – x = 0,5 hay x – y = –0,5. (1)
Quãng đường AB ô tô di chuyển với tốc độ 60 km/h là: 60x (km).
Quãng đường BC ô tô di chuyển với tốc độ 55 km/h là: 55y (km).
Tổng chiều dài quãng đường AB và BC là:
60x + 55y = 200 hay 12x + 11y = 40. (2)
Từ (1) và (2) ta có hệ phương trình:
Giải hệ phương trình:
Nhân hai vế của phương trình (1) với 12, ta được:
Trừ từng vế của phương trình thứ hai và phương trình thứ nhất, ta được:
23y = 46, suy ra y = 2.
Thay y = 2 vào phương trình (1), ta được: x – 2 = –0,5, do đó x = 1,5.
Ta thấy x = 1,5 và y = 2 (thoả mãn điều kiện).
Đổi x = 1,5 (giờ) = 1 giờ 30 phút.
Vậy thời gian di chuyển hết quãng đường AB là 1 giờ 30 phút, thời gian ô tô di chuyển hết quãng đường BC là 2 giờ.
Lời giải SBT Toán 9 Bài 3: Giải hệ hai phương trình bậc nhất hai ẩn hay khác: