Cho a nhỏ hơn b và c nhỏ hơn d, chứng minh rằng a + c nhỏ hơn b + d
Giải sách bài tập Toán 9 Bài tập cuối chương 2 - Kết nối tri thức
Bài 2.23 trang 29 sách bài tập Toán 9 Tập 1:
a) Cho a < b và c < d, chứng minh rằng a + c < b + d.
b) Cho 0 < a < b và 0 < c < d, chứng minh rằng 0 < ac < bd.
Lời giải:
a) Vì a < b nên a + c < b + c.
Vì c < d nên b + c < b + d.
Suy ra a + c < b + c < b + d hay a + c < b + d.
Vậy với a < b và c < d thì a + c < b + d.
b) Vì 0 < a và 0 < c nên 0 < ac.
Vì 0 < a < b và 0 < c nên ac < bc. (1)
Vì c < d và 0 < b nên bc < bd. (2)
Từ (1) và (2) ta được ac < bc < bd hay ac < bd.
Vậy với 0 < a < b và 0 < c < d thì 0 < ac < bd.
Lời giải SBT Toán 9 Bài tập cuối chương 2 hay khác:
Bài 1 trang 28 sách bài tập Toán 9 Tập 1: Nghiệm của bất phương trình –5x – 1 < 0 là ...
Bài 2 trang 29 sách bài tập Toán 9 Tập 1: Điều kiện xác định của phương trình là ...
Bài 3 trang 29 sách bài tập Toán 9 Tập 1: Phương trình 2x + 1 = m có nghiệm lớn hơn –2 với ...
Bài 4 trang 29 sách bài tập Toán 9 Tập 1: Nghiệm của bất phương trình 3x – 1 ≤ 2x + 2 là ...
Bài 5 trang 29 sách bài tập Toán 9 Tập 1: Cho a > b, khi đó ta có ...
Bài 2.21 trang 29 sách bài tập Toán 9 Tập 1: Giải các phương trình sau: a) ; ...