Cho hai vectơ vecto u = ( 2a - 1; - 3) và vecto v = ( 3;4b + 1). Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau: A. a = 2, b = – 1; B. a = – 1, b = 2; C. a = – 1, b = – 2; D.
Câu hỏi:
Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\] và \[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
A. a = 2, b = – 1;
B. a = – 1, b = 2;
C. a = – 1, b = – 2;
D. a = 2, b = 1.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Để \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a = 4\\4b = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\).
Vậy a = 2 và b = – 1.