Cho tam giác ABC có tọa độ ba đỉnh A(1; 4), B(3; –1), C(6; 2). Phương trình đường trung tuyến AM của tam giác ABC là: A. x + y – 5 = 0; B. x – y + 3 = 0; C. x + y + 5 = 0; D. x – y –3 = 0
Câu hỏi:
Cho tam giác ABC có tọa độ ba đỉnh A(1; 4), B(3; –1), C(6; 2). Phương trình đường trung tuyến AM của tam giác ABC là:
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Tam giác ABC có AM là đường trung tuyến.
Suy ra M là trung điểm BC.
Khi đó \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_B} + {x_C}}}{2} = \frac{{3 + 6}}{2} = \frac{9}{2}\\{y_M} = \frac{{{y_B} + {y_C}}}{2} = \frac{{ - 1 + 2}}{2} = \frac{1}{2}\end{array} \right.\)
Suy ra tọa độ \(M\left( {\frac{9}{2};\frac{1}{2}} \right)\).
Đường trung tuyến AM đi qua hai điểm A(1; 4) và \(M\left( {\frac{9}{2};\frac{1}{2}} \right)\).
Suy ra phương trình AM: \(\frac{{x - 1}}{{\frac{9}{2} - 1}} = \frac{{y - 4}}{{\frac{1}{2} - 4}}\)
\( \Leftrightarrow \frac{{x - 1}}{{\frac{7}{2}}} = \frac{{y - 4}}{{ - \frac{7}{2}}}\)
\( \Leftrightarrow - \frac{7}{2}\left( {x - 1} \right) = \frac{7}{2}\left( {y - 4} \right)\)
⇔ –x + 1 = y – 4
⇔ x + y – 5 = 0.
Vậy ta chọn phương án A.