Giá trị nhỏ nhất của biểu thức F = y – x trên miền xác định bởi hệ
Câu hỏi:
Giá trị nhỏ nhất của biểu thức F = y – x trên miền xác định bởi hệ là
A. – 3;
B. 0;
C. – 2;
Trả lời:
Đáp án đúng là: C
Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục tọa độ như dưới đây:
Ta vẽ đường thẳng d1: 2x + y = 2, đường thẳng d1 đi qua hai điểm (0; 2) và (1; 0)
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 + 0 = 0 < 2, điểm O(0; 0) thoả mãn bất phương trình 2x + y ≤ 2, vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Ta có miền nghiệm của bất phương trình là phần nửa mặt phẳng được chia bởi d1 và chứa điểm O(0; 0) (kể cả bờ).
Ta vẽ đường thẳng d2: x - y = 2, đường thẳng d1 đi qua hai điểm (0; - 2) và (2; 0)
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0 - 0 = 0 < 2, điểm O(0; 0) thoả mãn bất phương trình x - y ≤ 2, vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Ta có miền nghiệm của bất phương trình là phần nửa mặt phẳng được chia bởi d1 và chứa điểm O(0; 0) (kể cả bờ).
Ta vẽ đường thẳng d3: 5x + y = - 4, đường thẳng d1 đi qua hai điểm (0; -4) và
Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 5.0 + 0 = 0 > - 4, điểm O(0; 0) thoả mãn bất phương trình 5x + y ≥ - 4, vậy điểm O(0; 0) thuộc miền nghiệm của bất phương trình. Ta có miền nghiệm của bất phương trình là phần nửa mặt phẳng được chia bởi d1 và chứa điểm O(0; 0) (kể cả bờ).
Miền nghiệm là phần không bị gạch như hình vẽ.
Giá trị nhỏ nhất của biết thức F = y – x chỉ đạt được tại các điểm A(- 2; 6),;
Ta có:
F(x; y) = y – x suy ra F(- 2; 6) = 6 – (– 2) = 8,
F(x; y) = y – x suy ra F= ,
F(x; y) = y – x suy ra F= .
Vậy giá trị nhỏ nhất biểu thức F = y – x = – 2.