Giải Toán 10 trang 44 Tập 1 Cánh diều
Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 44 Tập 1 trong Bài 3: Dấu của tam thức bậc hai Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 44.
Giải Toán 10 trang 44 Tập 1 Cánh diều
Câu hỏi khởi động trang 44 Toán lớp 10 Tập 1: Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệp tính toán lợi nhuận y (đồng) theo công thức sau: y = – 200x2 + 92 000x – 8 400 000, trong đó x là số sản phẩm được bán ra. Như vậy, việc xác định lãi hay lỗ khi kinh doanh loại sản phẩm trên dẫn tới việc xét dấu của y = – 200x2 + 92 000x – 8 400 000, tức là ta cần xét dấu của tam thức bậc hai f(x) = – 200x2 + 92 000x – 8 400 000.
Làm thế nào để xét dấu tam thức bậc hai?
Lời giải:
Đa thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) được gọi là tam thức tâm bậc hai.
Sau bài học thứ 3 của chương 3 này, ta sẽ biết cách xét dấu tam thức bậc hai và áp dụng vào xét dấu tam thức bậc hai f(x) = – 200x2 + 92 000x – 8 400 000.
Ta có: a = – 200, b = 92 000, c = – 8 400 000.
∆ = b2 – 4ac = 920002 – 4 . (– 200) . (– 8 400 000) = 1 744 000 000 > 0
Khi đó f(x) có hai nghiệm ; .
Lại có a = – 200 < 0.
Do đó f(x) < 0 với mọi x thuộc các khoảng và .
f(x) > 0 với mọi x thuộc khoảng .
Hoạt động 1 trang 44 Toán lớp 10 Tập 1:
a) Quan sát Hình 17 và cho biết dấu của tam thức bậc hai f(x) = x2 – 2x + 2 trên ℝ.
b) Quan sát Hình 18 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 5 trên ℝ.
c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) trên ℝ với dấu của hệ số a trong trường hợp ∆ < 0.
Lời giải:
a) Quan sát Hình 17 ta thấy parabol nằm hoàn toàn phía trên trục hoành nên tam thức bậc hai f(x) = x2 – 2x + 2 > 0 với mọi x ∈ ℝ.
b) Quan sát Hình 18 ta thấy parabol nằm hoàn toàn phía dưới trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 5 < 0 với mọi x ∈ ℝ.
c) Nếu ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi .
Lời giải bài tập Toán lớp 10 Bài 3: Dấu của tam thức bậc hai Cánh diều hay khác: