Giải Toán 10 trang 46 Tập 1 Cánh diều


Haylamdo biên soạn và sưu tầm với giải Toán 10 trang 46 Tập 1 trong Bài 3: Dấu của tam thức bậc hai Toán lớp 10 Tập 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 46.

Giải Toán 10 trang 46 Tập 1 Cánh diều

Luyện tập 1 trang 46 Toán lớp 10 Tập 1: Xét dấu của mỗi tam thức bậc hai sau:

a) f(x) = – 2x2 + 4x – 5;

b) f(x) = – x2 + 6x – 9.

Lời giải:

a) Tam thức bậc hai f(x) = – 2x2 + 4x – 5 có ∆ = b2 – 4ac = 42 – 4 . (– 2) . (– 5) = – 24 < 0, hệ số a = – 2 < 0 nên f(x) < 0 với mọi x.

b) Tam thức bậc hai f(x) = – x2 + 6x – 9 có ∆ = b2 – 4ac = 62 – 4 . (– 1) . (– 9) = 0, nghiệm kép x0 = b2a=62.1=3 và hệ số a = – 1 < 0 nên f(x) < 0 với mọi x\3.

Luyện tập 2 trang 46 Toán lớp 10 Tập 1: Lập bảng xét dấu của tam thức bậc hai: f(x) = – x2 – 2x + 8.

Lời giải:

Tam thức bậc hai f(x) = – x2 – 2x + 8 có ∆ = b2 – 4ac = (– 2)2 – 4 . (– 1) . 8 = 36 > 0.

Do đó tam thức bậc hai có hai nghiệm x1 = – 4, x2 = 2 và hệ số a = – 1 < 0. 

Ta có bảng xét dấu như sau: 

Lập bảng xét dấu của tam thức bậc hai:  f(x) = – x^2 – 2x + 8.

Lời giải bài tập Toán lớp 10 Bài 3: Dấu của tam thức bậc hai Cánh diều hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: