Khoảng cách từ điểm M( –1; 1) đến đường thẳng Delta : 3x – 4y – 3 = 0 bằng: A. 2/5; B. 2; C. 4/5; D. 4/25.


Câu hỏi:

Khoảng cách từ điểm M( –1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
A. \[\frac{2}{5};\]
B. 2;
C. \[\frac{4}{5};\]
D. \[\frac{4}{{25}}.\]

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Áp dụng công thức tính khoảng cách từ một điểm đến đường thẳng ta có:

\[d\left( {M;\Delta } \right) = \frac{{\left| {3.( - 1) - 4.1 - 3} \right|}}{{\sqrt {9 + 16} }} = \frac{{10}}{5} = \]2.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Cho \[\overrightarrow a \] = (2m; 2), \[\overrightarrow b \]= (2; 7n). Tìm giá trị của m và n để tọa độ của vectơ \[\overrightarrow a - \overrightarrow b \] = (6; 5).

Xem lời giải »


Câu 2:

Cho A (2; –4), B (–5; 3). Tìm tọa độ của \[\overrightarrow {AB} \].

Xem lời giải »


Câu 3:

Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ \[\overrightarrow {MN} \]?

Xem lời giải »


Câu 4:

Trong hệ tọa độ Oxy cho \[\overrightarrow k \]= (5 ; 2), \[\overrightarrow n \] = (10 ; 8). Tìm tọa độ của vectơ \[3\overrightarrow k - 2\overrightarrow n \].

Xem lời giải »


Câu 5:

Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\]\[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:

Xem lời giải »


Câu 6:

Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

Xem lời giải »


Câu 7:

Một đường thẳng có bao nhiêu vectơ chỉ phương?

Xem lời giải »


Câu 8:

Viết phương trình tham số của đường thẳng d đi qua điểm M(6; –10) và vuông góc với trục Oy?

Xem lời giải »