Một lớp học có 30 học sinh gồm có nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường.Xác suất chọn được 2 nam và 1 nữ là 12/29. Tính số học sinh nữ của lớp. A. 16;
Câu hỏi:
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi n là số học sinh nam của lớp (n ∈ ℕ*; n ≤ 28)
⇒ Số học sinh nữ là 30 – n
Ta có: Mỗi lần chọn 3 học sinh từ 30 học sinh cho ta một tổ hợp chập 3 của 30 nên n(Ω) =\(C_{30}^3\)= 4060
Gọi N là biến cố:” Chọn được 2 học sinh nam và 1 học sinh nữ”
Việc chọn 2 học sinh nam và 1 học sinh nữ có thể xem 1 công việc 2 công đoạn:
- Công đoạn 1: chọn 2 học sinh nam có\(C_n^2\)
- Công đoạn 2: Chọn 1 học sinh nữ có \(C_{30 - n}^1\)= 30 – n cách
⇒ n(N) = (30 – n).\(C_n^2\)
⇒ P(N) = \(\frac{{n(N)}}{{n(\Omega )}}\) = \(\frac{{\left( {30{\rm{ }}--{\rm{ }}n} \right).C_n^2}}{{4060}}\)= \(\frac{{12}}{{29}}\)
⇒ (30 – n).\(C_n^2\) = 1680
Mà \(C_n^2\)=\(\frac{{n!}}{{2!(n - 2)!}}\)= \(\frac{{(n - 2)!.(n - 1).n}}{{2!(n - 2)!}}\)=\(\frac{{n(n - 1)}}{2}\)
⇒ (30 – n). \(\frac{{n(n - 1)}}{2}\) = 1680
⇒ -n3 + 31n2 - 30n + 3360 = 0
⇒\(\left[ \begin{array}{l}{n_1} \approx - 8,82\\{n_2} \approx 23,82\\{n_3} = 16\end{array} \right.\)
Vì n ∈ ℕ*; n ≤ 28 nên n = 16
Vậy số học sinh nữ của lớp là : 30 – 16 = 14 (học sinh).