Một xưởng sản xuất 2 món đồ chơi : - Mỗi món đồ chơi loại I cần 1 kg nguyên liệu


Câu hỏi:

Một xưởng sản xuất 2 món đồ chơi :

- Mỗi món đồ chơi loại I cần 1 kg nguyên liệu và 20 giờ làm, đem lại mức lời 30 nghìn đồng.

- Mỗi món đồ chơi loại II cần 2 kg nguyên liệu và 27 giờ làm, đem lại mức lời 50 nghìn đồng.

Biết xưởng có 140 kg nguyên liệu và 2150 giờ làm. Nên sản xuất mỗi loại đồ chơi là bao nhiêu để đem lại mức lời cao nhất ?

A. 40 đồ chơi loại I và 40 đồ chơi loại II;     

B. 50 đồ chơi loại I và 40 đồ chơi loại II;     
C. 40 đồ chơi loại I và 50 đồ chơi loại II;
D. 30 đồ chơi loại I và 50 đồ chơi loại II.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Gọi x, y (đồ chơi) lần lượt là số lượng đồ chơi loại I và loại II cần sản xuất (x, y ℕ).

Khi đó tổng số nguyên liệu sử dụng là x + 2y (kg).

Mà xưởng có 140 kg nguyên liệu nên x + 2y ≤ 140.

Tổng số giờ làm việc để tạo ra x đồ chơi loại I và y đồ chơi loại II là: 20x + 27y (giờ).

Mà xưởng có 2150 giờ làm nên 20x + 27y ≤ 2150.

Tổng lợi nhuận thu được là: N = 30x + 50y (nghìn đồng)

Khi đó bài toán trở thành tìm số tự nhiên x và y thỏa mãn

 x+2y14020x+27y2150 để N(x; y) = 30x + 50y đạt giá trị lớn nhất.

Ta biểu diễn miền nghiệm của hệ x+2y14020x+27y2150  với x ≥ 0; y ≥ 0.

Một xưởng sản xuất 2 món đồ chơi :  - Mỗi món đồ chơi loại I cần 1 kg nguyên liệu (ảnh 1)

Miền nghiệm của hệ là miền tứ giác OABC (kể cả biên) với O(0; 0), A(0; 70), B(40; 50), C(110; 0).

N(x; y) đạt giá trị lớn nhất tại các đỉnh của tứ giác OABC.

Ta có: N(0; 0) = 0

N(0; 70) = 30 . 0 + 50 . 70 = 3500

N(40; 50) = 30 . 40 + 50 . 50 = 3700

N(110; 0) = 30 . 110 + 50 . 0 = 3300.

Do đó Nmax = 3700, tại x = 40, y = 50.

Vậy nên sản xuất 40 đồ chơi loại I và 50 đồ chơi loại II để lợi nhuận là cao nhất.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Giá trị nhỏ nhất của biểu thức F(x; y) = 3y − 2x trên miền xác định bởi hệ y2x22yx4x+y5là :

Xem lời giải »


Câu 2:

Giá trị lớn nhất của biểu thức G(x; y) = 10x + 20y trên miền xác định bởi hệ x+2y100y4x0y0  là :

Xem lời giải »


Câu 3:

Một xưởng sản xuất sử dụng ba loại máy để sản xuất hai loại sản phẩm quần và áo. Để sản xuất 1 cái áo lãi 200 nghìn đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất 1 cái quần lãi 300 nghìn đồng người ta sử dụng máy I trong 3 giờ, máy II trong 4 giờ mà máy III trong 2 giờ. Biết rằng máy I chỉ hoạt động không quá 50 giờ, máy II hoạt động không quá 70 giờ và máy III hoạt động không quá 48 giờ. Hỏi phải sản xuất bao nhiêu quần và áo để xưởng sản xuất đạt mức lãi cao nhất ?

Xem lời giải »


Câu 4:

Cho hệ 2x+3y<5   (1)x+32y<5   (2) . Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì

Xem lời giải »