Số hạng chứa x4 trong khai triển biểu thức (2x + 3)^5 là: A. 32x^4; B. 240x^4; C. 720; D. 240.
Câu hỏi:
Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là:
A. 32x4;
B. 240x4;
C. 720;
D. 240.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có (a + b)5 = a5 + 5a4b +10a3b2 + 10a2b3 + 5ab4 + b5
Do đó: (2x + 3)5 = (2x)5 + 5(2x)4.3 +10(2x)3.32 + 10(2x)2.33 + 5.(2x).34 + 35
= 32x5 + 240x4 + 720x3 + 1 080x2 + 810x + 243
Vậy trong khai triển số hạng chứa x4 là 240x4.
Xem thêm bài tập Toán 10 Cánh diều có lời giải hay khác:
Câu 1:
Cho 7 chữ số 0; 2; 3; 4; 5; 6 ; 7 số các số tự nhiên lẻ có 3 chữ số lập thành từ các chữ số trên
Xem lời giải »
Câu 3:
Có 7 quả cầu đỏ khác nhau, 5 quả cầu vàng khác nhau và 3 quả cầu trắng khắc nhau. Hỏi có bao nhiêu cách lấy 3 quả cầu có đủ ba màu.
Xem lời giải »
Câu 4:
Cho các số 0; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau
Xem lời giải »
Câu 6:
Giá trị của n thỏa mãn \[3A_n^2 - A_{2n}^2 + 42 = 0\]là:
Xem lời giải »
Câu 7:
Có bao nhiêu giá trị của x thoả mãn \({P_x}A_x^2 + 72 = 6(A_x^2 + 2{P_x})\).
Xem lời giải »
Câu 8:
Tổng hệ số của x3 và x2 trong khai triển (1 + 2x)4 là :
Xem lời giải »