Tìm n biết Cn^n - 2+ 2n = 9 với n ≥ 2, n ∈ ℕ. A. n = 3; B. n = 4; C. n = 6; D. n = 10.
Câu hỏi:
Tìm n biết \(C_n^{n - 2} + 2n = 9\) với n ≥ 2, n ∈ ℕ.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
\(C_n^{n - 2} + 2n = 9\)
\( \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!.2!}} + 2n - 9 = 0\)
\( \Leftrightarrow \frac{{n.(n - 1).(n - 2)!}}{{(n - 2)!.2}} + 2n - 9 = 0\)
\( \Leftrightarrow \frac{{n.(n - 1)}}{2} + 2n - 9 = 0\)
\( \Leftrightarrow {n^2} - n + 4n - 18 = 0\)
⇔ n2 + 3n – 18 = 0
⇔ (n – 3).(n + 6) = 0
\( \Leftrightarrow \left[ \begin{array}{l}n - 3 = 0\\n + 6 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}n = 3\,\,\,(tm)\\n = - 6\,\,\,(ktm)\end{array} \right.\).