Tọa độ điểm A thuộc parabol (P): y^2 = 32x và đường thẳng ∆: 2x – 3y + 4 = 0 là: A. A( 34 + 24 căn bậc hai2 ;24 + 16 căn bậc hai 2);
Câu hỏi:
Tọa độ điểm A thuộc parabol (P): y2 = 32x và đường thẳng ∆: 2x – 3y + 4 = 0 là:
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Tọa độ giao điểm của (P) và ∆ thỏa hệ phương trình: \(\left\{ \begin{array}{l}{y^2} = 32x\\2x - 3y + 4 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32x\\2x = 3y - 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32x\\x = \frac{3}{2}y - 2\end{array} \right.\)
\[ \Leftrightarrow \left\{ \begin{array}{l}{y^2} = 32.\left( {\frac{3}{2}y - 2} \right) = 48y - 64\\x = \frac{3}{2}y - 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{y^2} - 48y + 64 = 0\\x = \frac{3}{2}y - 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}y = 24 \pm 16\sqrt 2 \\x = \frac{3}{2}y - 2\end{array} \right.\]
Với \(y = 24 + 16\sqrt 2 \), ta có \(x = \frac{3}{2}.\left( {24 + 16\sqrt 2 } \right) - 2 = 34 + 24\sqrt 2 \)
Suy ra \(A\left( {34 + 24\sqrt 2 ;24 + 16\sqrt 2 } \right)\).
Với \(y = 24 - 16\sqrt 2 \), ta có \(x = \frac{3}{2}.\left( {24 - 16\sqrt 2 } \right) - 2 = 34 - 24\sqrt 2 \)
Suy ra \(A\left( {34 - 24\sqrt 2 ;24 - 16\sqrt 2 } \right)\).
Vậy \(A\left( {34 + 24\sqrt 2 ;24 + 16\sqrt 2 } \right)\) hoặc \(A\left( {34 - 24\sqrt 2 ;24 - 16\sqrt 2 } \right)\) là tọa độ A cần tìm.
Do đó ta chọn phương án A.