Trong hệ tọa độ Oxy cho tam giác ABC có C (–2 ; –4), trọng tâm G (0 ; 4) và trung điểm cạnh BC là M (2 ; 0). Tổng hoành độ của điểm A và B là. A. –2 ; B. 2 ; C. 4 ; D. 8.
Câu hỏi:
Trong hệ tọa độ Oxy cho tam giác ABC có C (–2 ; –4), trọng tâm G (0 ; 4) và trung điểm cạnh BC là M (2 ; 0). Tổng hoành độ của điểm A và B là.
A. –2 ;
B. 2 ;
C. 4 ;
D. 8.
Trả lời:
Hướng dẫn giải
Đáp án đúng là : B
Vì M là trung điểm BC nên ta có : \[\left\{ \begin{array}{l}{x_B} = 2{x_M} - {x_C}\\{y_B} = 2{y_M} - {y_C}\end{array} \right.\]
\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}{x_B} = 2.2 - \left( { - 2} \right) = 6\\{y_B} = 2.0 - \left( { - 4} \right) = 4\end{array} \right.\]\[ \Rightarrow \]B (6; 4).
Vì G là trọng tâm tam giác ABC nên \[\left\{ \begin{array}{l}{x_A} = 3{x_G} - {x_B} - {x_C}\\{y_A} = 3{y_G} - {y_B} - {y_C}\end{array} \right.\]
\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}{x_A} = 3.0 - 6 - ( - 2)\\{y_A} = 3.4 - 4 - ( - 4)\end{array} \right.\]\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}{x_A} = - 4\\{y_A} = 12\end{array} \right.\] hay A (–4 ; 12).
Suy ra \[{x_A} + {x_B}\]= 6 + (–4) = 2.
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Cho \[\overrightarrow a \] = (2; – 4), \[\overrightarrow b \]= (– 5; 3). Tìm tọa độ của \[\overrightarrow a \] + \[\overrightarrow b \].
Xem lời giải »
Câu 2:
Cho \[\overrightarrow m \] = (3; – 4), \[\overrightarrow n \] = (–1; 2). Tìm tọa độ của vectơ \[\overrightarrow m - \overrightarrow n \].
Xem lời giải »
Câu 3:
Cho \[\overrightarrow m \]= (– 1; 2), \[\overrightarrow n \] = (5; – 7). Tìm tọa độ của vectơ \[2\overrightarrow m + \overrightarrow n \].
Xem lời giải »
Câu 4:
Trong hệ trục tọa độ M(1; 1), N (– 1; 1), tọa độ trung điểm I của đoạn thẳng MN là :
Xem lời giải »
Câu 5:
Trong hệ tọa độ Oxy cho tam giác ABC có A (– 2 + x ; 2), B (3 ; 5 + 2y), C(x ; 3 – y). Tìm tổng 2x + y với x, y để O (0 ; 0) là trọng tâm tam giác ABC?
Xem lời giải »
Câu 6:
Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B ( –3 ; 5) và trọng tâm G (–1 ; 1). Tìm tọa độ đỉnh C?
Xem lời giải »
Câu 7:
Cho \[\overrightarrow a \] = (–2m; 2), \[\overrightarrow b \]= (2; –7n). Tìm giá trị của m và n để tọa độ của vectơ \[\overrightarrow a - \overrightarrow b \] = (6; –5).
Xem lời giải »