Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2); B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng: A. 1/5; B. 3; C. 1/25; D. 3/5


Câu hỏi:

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1; 2); B(0; 3)C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

A. \[\frac{1}{5}\];
B. 3;
C. \[\frac{1}{{25}}\];
D. \[\frac{3}{5}.\]

Trả lời:

Hướng dẫn giải

Đáp án đúng là: A

+) Viết phương trình đường thẳng qua B, C

Ta có: B (0; 3); C (4; 0) \[\overrightarrow {BC} \]= (4; – 3) là vectơ chỉ phương của đường thẳng BC.

Ta chọn \[\overrightarrow n \](3; 4) là vectơ pháp tuyến của đường thẳng BC (\[\overrightarrow n \bot \overrightarrow {BC} \]), suy ra phương trình đường thẳng BC có phương trình: 3.(x – 0) + 4(y – 3) = 0 hay 3x + 4y – 12 = 0

+) Độ dài đường cao kẻ từ A

Độ dài đường cao kẻ từ đỉnh A của tam giác chính là khoảng cách từ điểm A đến đường thẳng BC:

\[{h_A} = d\left( {A;BC} \right) = \frac{{\left| {3.1 + 4.2 - 12} \right|}}{{\sqrt {9 + 16} }} = \frac{1}{5}.\]

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Xét vị trí tương đối của hai đường thẳng:

 \[{d_1}\]: x – 2y + 2 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0

Xem lời giải »


Câu 2:

Xét vị trí tương đối của hai đường thẳng:

\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0

Xem lời giải »


Câu 3:

Xét vị trí tương đối của hai đường thẳng \[{d_1}:\frac{x}{3} - \frac{y}{4} = 1\]\[{d_2}\]: 3x + 4y – 8 = 0.

Xem lời giải »


Câu 4:

Tìm m để hai đường thẳng d1 và d2 vuông góc với nhau:

\[{d_1}:\left\{ \begin{array}{l}x = - 1 + mt\\y = - 2 - 2t\end{array} \right.\]\[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + \left( {4 + m} \right)t'\end{array} \right.\].

Xem lời giải »


Câu 5:

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(3; -4); B(1; 5)C(3; 1). Tính diện tích tam giác ABC.

Xem lời giải »