Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi động viên còn lại. Cho biết có 2 vận động viên nữ và cho biết số ván


Câu hỏi:

Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi động viên còn lại. Cho biết có 2 vận động viên nữ và cho biết số ván các vận động viên chơi nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là 84. Hỏi số ván tất cả các vận động viên đã chơi?

A. 168;
B. 156;
C. 132;
D. 182.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Gọi số vận động viên nam là n.

Số ván các vận động viên nam chơi với nhau là \(2.C_n^2 = n\left( {n - 1} \right)\).

Số ván các vận động viên nam chơi với các vận động viên nữ là \(2.2.n = 4n\)

Vậy ta có n(n – 1) – 4n = 84

\( \Leftrightarrow \) n2 – 5n – 84 = 0

\( \Leftrightarrow \)n = 12 hoặc n = – 7.

Kết hợp với điều kiện n = 12 thoả mãn

Vậy số ván các vận động viên chơi là \(2C_{14}^2 = 182\).

Xem thêm bài tập Toán 10 Cánh diều có lời giải hay khác:

Câu 1:

Tên 15 quả bóng khác nhau để vào trong hộp. Có bao nhiêu cách chọn ra 4 quả bóng.

Xem lời giải »


Câu 2:

Số tập con gồm ba phần tử khác nhau của một tập hợp gồm bảy phần tử khác nhau?

Xem lời giải »


Câu 3:

Từ 6 điểm phân biệt thuộc đường thẳng và một điểm không thuộc đường thẳng ta có thể tạo được tất cả bao nhiêu tam giác?

Xem lời giải »


Câu 4:

Nếu \[C_n^k = 10\]\[A_n^k = 60\]. Thì k bằng

Xem lời giải »


Câu 5:

14 người gồm 8 nam và 6 nữ. Số cách chọn 6 người trong đó có đúng 2 nữ là

Xem lời giải »