X

Toán lớp 10 Chân trời sáng tạo

Cho bất phương trình f(x) = ax^2 + bx + c > 0, biết a < 0 và f(x) có nghiệm kép x0.


Câu hỏi:

Cho bất phương trình f(x) = ax2 + bx + c > 0, biết a < 0 và f(x) có nghiệm kép x0. Khi đó tập nghiệm của bất phương trình là:

A. (–∞; x0) (x0; +∞);             

B. ;           

C. {x0};                 

D. ℝ.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Theo đề, ta có f(x) = ax2 + bx + c > 0 (với a < 0) và có nghiệm kép x0.

Suy ra:

f(x) âm với mọi x thuộc hai khoảng (–∞; x0) và (x0; +∞);

f(x) = 0 khi x = x0.

Vậy bất phương trình ax2 + bx + c > 0 vô nghiệm.

Khi đó tập nghiệm của bất phương trình ax2 + bx + c > 0 là: .

Ta chọn phương án B.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Biệt thức và biệt thức thu gọn của tam thức bậc hai f(x) = –x2 – 4x – 6 lần lượt là:

Xem lời giải »


Câu 2:

Cho f(x) = ax2 + bx + c (a ≠ 0) và ∆ = b2 – 4ac. Khi f(x) luôn cùng dấu với hệ số a, với mọi x ℝ thì:

Xem lời giải »


Câu 3:

Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 4:

Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?

Xem lời giải »